Mammal Diversity Database. 2019. www.mammaldiversity.org. American Society of Mammalogists. Accessed 20 Mar 2019.
Ghanem SJ, Voigt CC. Increasing awareness of ecosystem services provided by bats. In: Brockmann HJ, Roper TJ, Naguib M, Mitani JC, Simmons LW, editors. Advances in the study of behavior. San Diego: Elsevier; 2012. p. 279–302.
Google Scholar
Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. Ecosystem services provided by bats. Ann N Y Acad Sci. 2011;1223:1–38.
Article
PubMed
Google Scholar
Kalka MB, Smith AR, Kalko EKV. Bats limit arthropods and herbivory in a tropical forest. Science. 2008;320:71.
Article
CAS
PubMed
Google Scholar
Williams-Guillén K, Perfecto I, Vandermeer J. Bats limit insects in a neotropical agroforestry system. Science. 2008;320:70.
Article
PubMed
CAS
Google Scholar
Böhm SM, Wells K, Kalko EKV. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS One. 2011;6:e17857.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maas B, Clough Y, Tscharntke T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol Lett. 2013;16:1480–7.
Article
PubMed
Google Scholar
Federico P, Hallam TG, McCracken GF, Purucker ST, Grant WE, Correa-Sandoval AN, et al. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol Appl. 2008;18:826–37.
Article
PubMed
Google Scholar
Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-Central Texas. Front Ecol Environ. 2006;4:238–43.
Article
Google Scholar
Boyles JG, Cryan PM, McCracken GF, Kunz TH. Conservation. Economic importance of bats in agriculture. Science. 2011;332:41–2.
Article
PubMed
Google Scholar
Taylor PJ, Grass I, Alberts AJ, Joubert E, Tscharntke T. Economic value of bat predation services--a review and new estimates from macadamia orchards. Ecosyst Serv. 2018;30:372–81.
Article
Google Scholar
Ducummon SL. Ecological and economic importance of bats. 2000. https://www.cbd.int/financial/values/g-ecobats.pdf. Accessed 7 Jul 2019.
Google Scholar
Muscarella R, Fleming TH. The role of frugivorous bats in tropical forest succession. Biol Rev Camb Philos Soc. 2007 Nov;82:573–90.
Article
PubMed
Google Scholar
Fenolio DB, Graening GO, Collier BA, Stout JF. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc Biol Sci. 2006;273:439–43.
Article
CAS
PubMed
Google Scholar
Gnaspini P, Trajano E. Guano communities in tropical caves. In: Wilkins H, Culver DC, Humphreys WF, editors. Ecosystems of the world subterranean ecosystems. Amsterdam: Elsevier; 2000. p. 251–68.
Google Scholar
Food and Agriculture Organization of the United Nations. In: Newman SH, Field H, Epstein J, de Jong C, editors. Investigating the role of bats in emerging zoonoses: balancing ecology, conservation and public health interest. Rome: FAO; 2011.
Google Scholar
Hayman DTS. Bats as viral reservoirs. Annu Rev Virol. 2016;3:77–99.
Article
CAS
PubMed
Google Scholar
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19:531–45.
Article
PubMed
PubMed Central
Google Scholar
Woo PCY, Lau SKP, Li KSM, Poon RWS, Wong BHL, Tsoi H-W, et al. Molecular diversity of coronaviruses in bats. Virology. 2006;351:180–7.
Article
CAS
PubMed
Google Scholar
Vijaykrishna D, Smith GJD, Zhang JX, Peiris JSM, Chen H, Guan Y. Evolutionary insights into the ecology of coronaviruses. J Virol. 2007;81:4012–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir Res. 2014;101:45–56.
Article
CAS
PubMed
Google Scholar
Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. Global patterns in coronavirus diversity. Virus Evol. 2017;3:vex012.
Article
PubMed
PubMed Central
Google Scholar
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9.
Article
CAS
PubMed
Google Scholar
Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. MBio. 2017;8,e00373-17.
Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan J, Hon C-C, Li Y, Wang D, Xu G, Zhang H, et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J Gen Virol. 2010;91:1058–62.
Article
CAS
PubMed
Google Scholar
Hu B, Ge X, Wang L-F, Shi Z. Bat origin of human coronaviruses. Virol J. 2015;12:221.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 2013;19:1697–9.
Article
PubMed
PubMed Central
Google Scholar
Corman VM, Ithete NL, Richards LR, Corrie Schoeman M, Preiser W, Drosten C, et al. Rooting the phylogenetic tree of MERS-coronavirus by characterization of a conspecific virus from an African bat. J Virol. 2014;88:11297–303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi H-W, Wong BHL, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci. 2005;102:14040–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013;19:1819–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. 2004. Emergencies preparedness, response. http://www.who.int/csr/sars/country/table2004_04_21/en/. Accessed 14 Aug 2018.
Google Scholar
World Health Organization. Middle East respiratory syndrome coronavirus. https://www.who.int/emergencies/mers-cov/en/. Accessed 14 Oct 2018.
Haagmans BL, Al Dhahiry SHS, Reusken CBEM, Raj VS, Galiano M, Myers R, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14:140–5.
Article
CAS
PubMed
Google Scholar
Azhar EI, Hashem AM, El-Kafrawy SA, Sohrab SS, Aburizaiza AS, Farraj SA, et al. Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient. MBio. 2014;5:e01450–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499–505.
Article
CAS
PubMed
Google Scholar
Chen L, Liu B, Yang J, Jin Q. DBatVir: the database of bat-associated viruses. Database. 2014;2014:bau021.
Article
PubMed
PubMed Central
Google Scholar
Woo PCY, Lau SKP, Huang Y, Yuen K-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 2009;234:1117–27.
Article
CAS
Google Scholar
Pan Y, Tian X, Qin P, Wang B, Zhao P, Yang Y-L, et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet Microbiol. 2017;211:15–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A, Owusu M, et al. Evidence for an ancestral association of human coronavirus 229E with bats. J Virol. 2015;89:11858–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A, Seebens A, et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis. 2009;15:1377–84.
Article
PubMed
PubMed Central
Google Scholar
Yang X-L, Hu B, Wang B, Wang M-N, Zhang Q, Zhang W, et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of SARS coronavirus. J Virol. 2015;90:3253–6.
Article
PubMed
CAS
Google Scholar
Luo C-M, Wang N, Yang X-L, Liu H-Z, Zhang W, Li B, et al. Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus. J Virol. 2018;92:JVI.00116–8.
Google Scholar
Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol. 2017;91:JVI.01953–16.
Google Scholar
de Sales Lima FE, Campos FS, Kunert Filho HC, Batista HB d CR, Júnior PC, Cibulski SP, et al. Detection of Alphacoronavirus in velvety free-tailed bats (Molossus molossus) and Brazilian free-tailed bats (Tadarida brasiliensis) from urban area of southern Brazil. Virus Genes. 2013;47:164–7.
Article
CAS
Google Scholar
Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4:3044–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau SKP, Li KSM, Huang Y, Shek C-T, Tse H, Wang M, et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol. 2010;84:2808–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wacharapluesadee S, Duengkae P, Chaiyes A, Kaewpom T, Rodpan A, Yingsakmongkon S, et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol J. 2018;15:38.
Article
PubMed
PubMed Central
Google Scholar
Smith C. Persistent or long-term coronavirus infection in Australian bats. Microbiol Aust. 2017;38:8–11.
Google Scholar
Baldwin HJ. Epidemiology and ecology of virus and host: bats and coronaviruses in Ghana, West Africa, Doctor of philosophy dissertation. New South Wales: Macquarie University; 2015.
Google Scholar
Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM, Gloza-Rausch F, et al. Amplification of emerging viruses in a bat colony. Emerg Infect Dis. 2011;17:449–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M-N, Zhang W, Gao Y-T, Hu B, Ge X-Y, Yang X-L, et al. Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. Virol Sin. 2016;31:78–80.
Article
PubMed
PubMed Central
Google Scholar
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greger M. The human/animal interface: emergence and resurgence of zoonotic infectious diseases. Crit Rev Microbiol. 2007;33:243–99.
Article
PubMed
Google Scholar
Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, et al. A Strategy to estimate unknown viral diversity in mammals. mBio. 2013;4:mbio.00598–13.
Article
CAS
Google Scholar
Watanabe S, Masangkay JS, Nagata N, Morikawa S, Mizutani T, Fukushi S, et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis. 2010;16:1217–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quan P-L, Firth C, Street C, Henriquez JA, Petrosov A, Tashmukhamedova A, et al. Identification of a Severe Acute Respiratory Syndrome Coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio. 2010;1:mBio.00208–10.
Article
CAS
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Townzen JS, Brower AVZ, Judd DD. Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Med Vet Entomol. 2008;22:386–93.
Article
CAS
PubMed
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. GenBank. Nucleic Acids Res. 2018;46:D41–7.
Article
CAS
PubMed
Google Scholar
Ratnasingham S, Hebert PDN. The barcode of life data system. Mol Ecol Notes. 2007;7:355–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology. 2009;90:2648.
Article
Google Scholar
Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Ernest SKM. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology. 2015;96(11):3109.
Article
Google Scholar
Luis AD, O’Shea TJ, Hayman DTS, Wood JLN, Cunningham AA, Gilbert AT, et al. Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol Lett. 2015;18:1153–62.
Article
PubMed
PubMed Central
Google Scholar
Mühldorfer K, Speck S, Kurth A, Lesnik R, Freuling C, Müller T, et al. Diseases and causes of death in European bats: dynamics in disease susceptibility and infection rates. PLoS One. 2011;6:e29773.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hayman DTS, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JLN, et al. Evidence of henipavirus infection in west African fruit bats. PLoS One. 2008;3:e2739.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepoel R, et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012;8:e1002877.
Article
PubMed
PubMed Central
Google Scholar
Kolodny O, Weinberg M, Reshef L, Harten L, Hefetz A, Gophna U, et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat Ecol Evol. 2018. https://doi.org/10.1038/s41559-018-0731-z.
Article
Google Scholar
Willoughby AR, Phelps KL, PREDICT Consortium, Olival KJ. A Comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity. 2017;9:35.
Article
Google Scholar
Hoyt JR, Langwig KE, White JP, Kaarakka HM, Redell JA, Kurta A, et al. Cryptic connections illuminate pathogen transmission within community networks. Nature. 2018;563:710–3.
Article
CAS
PubMed
Google Scholar
van Schaik J, Kerth G. Host social organization and mating system shape parasite transmission opportunities in three European bat species. Parasitol Res. 2017;116:589–99.
Article
PubMed
Google Scholar
Happold M, Happold D, editors. Mammals of Africa volume IV-hedgehogs, shrews and bats. London: Bloomsbury Publishing; 2013.
Google Scholar
Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A probabilistic programming language. J Stat Softw. 2017;76(1) Available from: https://www.osti.gov/biblio/1430202.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. https://www.R-project.org/.
Stan Development Team. RStan: the R interface to Stan. 2018.
Google Scholar
Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006;1:515–34.
Article
Google Scholar
Polson NG, Scott JG. On the half-Cauchy prior for a global scale parameter. Bayesian Anal. 2012;7:887–902.
Article
Google Scholar
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–72.
Article
Google Scholar
Simmons NB. Order Chiroptera. In: Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference; 2005. p. 312–529.
Google Scholar
Vallo P, Benda P, Martínková N, Kauch P, Kalko EKV, Čeý J, et al. Morphologically uniform bats Hipposideros aff. ruber (Hipposideridae) exhibit high mitochondrial genetic diversity in southeastern Senegal. Acta Chiropt. 2011;13:79–88.
Article
Google Scholar
Vallo P, Guillén-Servent A, Benda P, Pires DB, Koubek P. Variation of mitochondrial DNA in the Hipposideros caffer complex (Chiroptera: Hipposideridae) and its taxonomic implications. Acta Chiropt. 2008;10:193–206.
Article
Google Scholar
Happold M. Hipposideros ruber Noack’s leaf-nosed bat. In: Happold M, David H, editors. Mammals of Africa volume IV: bats and shrews; 2013. p. 393–5.
Google Scholar
Happold M. Hipposideros cafer Sundevall’s Roundleaf bat. In: Happold M, David H, editors. Mammals of Africa volume IV: bats and shrews; 2013. p. 375–8.
Google Scholar
Schweiger BR. Elucidating the species limits and range boundaries of the African yellow house bats, genus Scotophilus. Senior thesis. Lake Forest college, Illinois, US; 2017.
Smith CS. Australian bat coronaviruses, Philosophical doctor thesis. Queensland: University of Queensland; 2014.
Google Scholar
Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Drexler JF, et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis. 2008;14:626–31.
Article
PubMed
PubMed Central
Google Scholar
Rihtarič D, Hostnik P, Steyer A, Grom J, Toplak I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch Virol. 2010;155:507–14.
Article
PubMed
CAS
PubMed Central
Google Scholar
Osborne C, Cryan PM, O’Shea TJ, Oko LM, Ndaluka C, Calisher CH, et al. Alphacoronaviruses in New World bats: prevalence, persistence, phylogeny, and potential for interaction with humans. PLoS One. 2011;6:e19156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis. 2013;19:456–9.
Article
PubMed
PubMed Central
Google Scholar
Peel AJ, Baker KS, Hayman DTS, Broder CC, Cunningham AA, Fooks AR, et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci Rep. 2018;8:3859.
Article
PubMed
PubMed Central
CAS
Google Scholar
Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc Biol Sci. 2008;275:861–9.
Article
PubMed
PubMed Central
Google Scholar
Epstein JH, Baker ML, Zambrana-Torrelio C, Middleton D, Barr JA, Dubovi E, et al. Duration of maternal antibodies against canine distemper virus and Hendra virus in pteropid bats. PLoS One. 2013;8:e67584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peel AJ, Baker KS, Crameri G, Barr JA, Hayman DTS, Wright E, et al. Henipavirus neutralising antibodies in an isolated island population of African fruit bats. PLoS One. 2012;7:e30346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breed AC, Breed MF, Meers J, Field HE. Evidence of endemic Hendra virus infection in flying-foxes (Pteropus conspicillatus)—implications for disease risk management. PLoS One. 2011;6:e28816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong J, Smith CS, Peel AJ, Plowright RK, Kerlin DH, McBroom J, et al. Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis macropus). Epidemiol Infect. 2017;145:2053–61.
Article
CAS
PubMed
Google Scholar
Peel AJ, Wood JLN, Baker KS, Breed AC, Carvalho AD, Fernández-Loras A, et al. How does africa’s most hunted bat vary across the continent? Population traits of the straw-coloured fruit bat (Eidolon helvum) and its interactions with humans. Acta Chiropt. 2017;19:77–92.
Article
Google Scholar
Dietrich M, Wilkinson DA, Benlali A, Lagadec E, Ramasindrazana B, Dellagi K, et al. Leptospira and paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife. Environ Microbiol. 2015;17(11):4280–9.
Article
PubMed
Google Scholar
Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis. 2009;15:482–5.
Article
PubMed
PubMed Central
Google Scholar
DeFrees SL, Wilson DE. Eidolon helvum. Mamm Species. 1988;312:1–5.
Article
Google Scholar
Dengis CA. Taphozous mauritianus. Mamm Species. 1996;522:1–5.
Article
Google Scholar
Dunlop J. Coleura afra. Mamm Species. 1997;566:1–4.
Article
Google Scholar
Independent Scientific Group on Cattle TB. Bovine TB: the scientific evidence. London: Defra Publications; 2007.
Google Scholar
Comte S, Umhang G, Raton V, Raoul F, Giraudoux P, Combes B, et al. Echinococcus multilocularis management by fox culling: an inappropriate paradigm. Prev Vet Med. 2017;147:178–85.
Article
PubMed
Google Scholar
Morters MK, Restif O, Hampson K, Cleaveland S, Wood JLN, Conlan AJK. Evidence-based control of canine rabies: a critical review of population density reduction. J Anim Ecol. 2013;82:6–14.
Article
PubMed
Google Scholar
Streicker DG, Recuenco S, Valderrama W, Gomez Benavides J, Vargas I, Pacheco V, et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proc Biol Sci. 2012;279:3384–92.
Article
PubMed
PubMed Central
Google Scholar
Blackwood JC, Streicker DG, Altizer S, Rohani P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci. 2013;110:20837–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fornes A, Lord RD, Kuns ML, Larghi OP, Fuenzalida E, Lazara L. Control of bovine rabies through vampire bat control. J Wildl Dis. 1974;10:310–6.
Article
CAS
PubMed
Google Scholar
Amman BR, Nyakarahuka L, McElroy AK, Dodd KA, Sealy TK, Schuh AJ, et al. Marburgvirus resurgence in Kitaka mine bat population after extermination attempts, Uganda. Emerg Infect Dis. 2014;20:1761–4.
Article
PubMed
PubMed Central
Google Scholar
Towner JS, Amman BR, Sealy TK, Carroll SAR, Comer JA, Kemp A, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009;5:e1000536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maganga GD, Bourgarel M, Ella GE, Drexler JF, Gonzalez J-P, Drosten C, et al. Is Marburg virus enzootic in Gabon? J Infect Dis. 2011;204(Suppl 3):S800–3.
Article
CAS
PubMed
Google Scholar
López-Roig M, Serra-Cobo J. Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul Ecol. 2014;56:471–80.
Article
Google Scholar
Field HE. Bats and emerging zoonoses: henipaviruses and SARS. Zoonoses Public Health. 2009;56:278–84.
Article
CAS
PubMed
Google Scholar
Kirkpatrick JF, Turner JW Jr. Compensatory reproduction in feral horses. J Wildl Manag. 1991;4:649–52.
Article
Google Scholar
Langvatn R, Loison A. Consequences of harvesting on age structure, sex ratio and population dynamics of red deer Cervus elaphus in Central Norway. Wildlife Biol. 1999;5:213.
Article
Google Scholar
Beasley JC, Olson ZH, Beatty WS, Dharmarajan G, Rhodes OE Jr. Effects of culling on mesopredator population dynamics. PLoS One. 2013;8:e58982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonesi L, Harrington LA, Maran T, Sidorovich VE, Macdonald DW. Demography of three populations of American mink mustela vison in Europe. Mamm Rev. 2006;36:98–106.
Article
Google Scholar
Cowan PE. Effects of intensive trapping on breeding and age structure of brushtail possums, Trichosurus vulpecula, on Kapiti Island, New Zealand. N Z J Zool. 1993;20:1–11.
Article
Google Scholar
Lindahl JF, Grace D. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol. 2015;5:30048.
PubMed
Google Scholar
Morse SS. Factors in the emergence of infectious diseases. In: Price-Smith AT, editor. Plagues and politics: infectious disease and international policy. London: Palgrave Macmillan UK; 2001. p. 8–26.
Chapter
Google Scholar
Murray KA, Daszak P. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr Opin Virol. 2013;3:79–83.
Article
PubMed
PubMed Central
Google Scholar
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv. 2015;1:e1400253.
Article
PubMed
PubMed Central
Google Scholar
Voigt CC, Kingston T. Bats in the Anthropocene. In: Voigt CC, Kingston T, editors. Bats in the Anthropocene: conservation of bats in a changing world. Cham: Springer International Publishing; 2016. p. 1–9.
Chapter
Google Scholar
Buttke DE, Decker DJ, Wild MA. The role of one health in wildlife conservation: a challenge and opportunity. J Wildl Dis. 2015;51:1–8.
Article
PubMed
Google Scholar
Terraube J, Fernández-Llamazares Á, Cabeza M. The role of protected areas in supporting human health: a call to broaden the assessment of conservation outcomes. Curr Opin Environ Sustain. 2017;25:50–8.
Article
Google Scholar