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Abstract

Background: Bats provide important ecosystem services; however, current evidence supports that they host several
zoonotic viruses, including species of the Coronaviridae family. If bats in close interaction with humans host and shed
coronaviruses with zoonotic potential, such as the Severe Acute Respiratory Syndrome virus, spillover may occur.
Therefore, strategies aiming to mitigate potential spillover and disease emergence, while supporting the conservation
of bats and their important ecological roles are needed. Past research suggests that coronavirus shedding in bats varies
seasonally following their reproductive cycle; however, shedding dynamics have been assessed in only a few species,
which does not allow for generalization of findings across bat taxa and geographic regions.

Methods: To assess the generalizability of coronavirus shedding seasonality, we sampled hundreds of bats belonging
to several species with different life history traits across East Africa at different times of the year. We assessed, via
Bayesian modeling, the hypothesis that chiropterans, across species and spatial domains, experience seasonal trends in
coronavirus shedding as a function of the reproductive cycle.

Results: We found that, beyond spatial, taxonomic, and life history differences, coronavirus shedding is more expected
when pups are becoming independent from the dam and that juvenile bats are prone to shed these viruses.

Conclusions: These findings could guide policy aimed at the prevention of spillover in limited-resource settings, where
longitudinal surveillance is not feasible, by identifying high-risk periods for coronavirus shedding. In these periods, contact
with bats should be avoided (for example, by impeding or forbidding people access to caves). Our proposed strategy
provides an alternative to culling – an ethically questionable practice that may result in higher pathogen levels – and
supports the conservation of bats and the delivery of their key ecosystem services.
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Background
The order Chiroptera is the second largest order of
mammals with more than 1000 identified species [1].
The members of this order, bats, provide important eco-
system services (reviewed in [2, 3]). For example, insectiv-
orous bats can reduce arthropod herbivory [4–6], increase
agricultural yields [7], reduce the need for insecticides [8],
and prevent large financial losses in agriculture [9–11].

Plant-visiting chiropterans provide pollination and seed-
dispersing services (reviewed in [3]), certain nectivorous
bats are pollinators of economically important plants [12],
and frugivorous bats can be important for reforestation
[13]. Finally, cave-roosting bats produce guano, the main
energy source in many cave ecosystems [14, 15], and the
mining of this product is an income source in poor com-
munities [16].
However, current evidence supports that bats are a

natural host of several disease-causing viruses across the
globe, including zoonotic viruses, such as rabies virus
(Rhabdoviridae, genus Lyssavirus); Hendra and Nipah
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viruses (Paramyxoviridae, genus Henipavirus); and Mar-
burg and ebolaviruses (Filoviridae, genus Marburgvirus
and Ebolavirus, respectively; [17, 18]). Bats are also hosts
of several viruses of the Coronaviridae family [19–22].
Molecular evidence suggests that the Severe Acute Re-
spiratory Syndrome Betacoronavirus (SARS-CoV beta-
CoV) and the Middle-East Respiratory Syndrome
betaCoV (MERS-CoV) originated from bats [23–31]. Both
viruses emerged in humans during the past two decades,
specifically in China (2002) and Saudi Arabia (2012). The
SARS-CoV pandemic included 8096 cases in 27 countries
with a ~ 10% case fatality [32], while MERS-CoV has af-
fected 2279 people in 27 countries with a case fatality of
~ 35% [33]. Incidental cases of MERS-CoV are still de-
tected mainly in Saudi Arabia [32], and it is thought that
camels are important for human infection [34–36].
Today it is known that: i) a high genetic diversity of

coronaviruses (CoVs) is present in more than 100 bat
species, including viruses related to SARS and MERS
CoV [37]; ii) CoVs are prone to move and adapt to new
host species [38]; iii) plausibly, all mammalian-adapted
CoVs may have originated in bats [20, 21, 38], including
a recently emerged highly fatal Alphacoronavirus in pig-
lets [39] and the 229E human CoV [22, 40, 41]; and iv)
CoVs found in bats can use human receptors for cell
entry [21, 25, 42, 43]. These lines of evidence suggest
that future spillover of coronaviruses humans is feasible.
Because CoVs are found in bat species that have

adapted to be in close contact with humans, such as the
straw-colored fruit bat (Eidolon helvum) and the Brazil-
ian free-tailed bat (Tadarida brasiliensis [44, 45]), high
contact “bat-human” interfaces currently exist around
the world. If the bats in these interfaces shed CoVs with
the ability to infect humans, then opportunities for spill-
over through direct exposure to feces [37] or the con-
tamination of food are created, as these viruses can
remain infectious in the environment for days [46].
Therefore, strategies aiming to mitigate human exposure
to CoVs, and thus, the risk of spillover and disease
emergence are needed, while supporting the conserva-
tion of bats and their important ecological roles.
Longitudinal sampling with specific species has shown that

the proportion of bats shedding CoVs varies seasonally [47–
50] and that fecal CoV-RNA loads can also be heterogeneous
over time [51, 52]. If exposure through contact with bat feces
is a main pathway for zoonotic CoV spillover to humans but
shedding of these pathogens is not uniform over time, then
mitigation strategies aiming to prevent bat CoV-shed expos-
ure could be targeted temporally, directed especially at high-
risk seasons. Such a strategy could guide policy in limited-
resource settings where sampling bats for CoV testing is not
feasible and it could support an ethically acceptable manage-
ment to mitigate spillover risk. However, the few species and
locations tested to date do not allow for identification of a

potential seasonal shedding pattern to responsibly suggest
temporal spillover risk management across species and geog-
raphy. Therefore, assessment of the CoV dynamics in a
broader range of bat species that show different life history
traits, as well as in diverse geographic and ecological circum-
stances, could be extremely useful.
To this end, we evaluated the dynamics of CoV shedding

in different bat species sampled in several locations in East
Africa at different times of the year. This geographical region
has been identified as a hotspot of pathogen emergence [53],
where CoV host switching events seem to be higher com-
pared to other areas [22], but, to our knowledge, no study on
CoV dynamics in bats has been conducted. Specifically, we
hypothesized that bat species exhibit seasonal trends in CoV
shedding that are associated with the reproductive season.
We assessed this hypothesis by fitting Bayesian statistical
multivariable models to evaluate whether CoV shedding in
bats is positively associated with the time period when pups
are becoming independent from the dam. Beyond the inclu-
sion of several species sampled in different countries at dif-
ferent times, we explicitly identified the reproductive events
for each species at the time of sampling and also included
other traits, such as the aggregation of individuals at the
roost, that may be involved in CoV dynamics.

Methods
Sample collection
Samples (rectal swabs and fresh feces) were collected
from bats captured in Uganda, Rwanda, and Tanzania
(Fig. 1), between September 2011 and April 2014 with
permission from local authorities and under the Institu-
tional Animal Care and Use Committee at the University
of California, Davis (protocol number: 16048).
Bats were captured in 36 unique locations between lati-

tudes − 0.9739 and− 10.7506 (Fig. 1). These locations were
selected because they represented potentially high-risk inter-
faces for contact between bats and humans, such as areas of
land-use change, human-dwellings, ecotourism sites, mar-
kets, and places with potential for occupational exposure
[54]. Locations in close proximity (Euclidean distance < 20
km) in which sampling was conducted within the same week
were considered a single sampling event. The remaining
sampling events that occurred in the same location or
spatially close to others but conducted in different weeks
were considered independent sampling events. As result, we
collected samples from 30 unique sampling events.
All captures were conducted using mist nets set in the

early morning or at dawn. Individuals were released after
sample collection. Samples were handled as previously de-
scribed [22, 55]. Each sample was immediately transferred to
vials containing Viral Transport Media and NucliSens® Lysis
Buffer (bioMérieux, Inc., Marcy-I’Étoile, France), which were
maintained in liquid nitrogen until storage in a -80C freezer
in each country.
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Coronavirus detection
RNA was extracted from all samples, and cDNA was pre-
pared as previously described [22, 55]. Two broadly reactive
consensus PCR assays targeting non-overlapping fragments
of the orf1ab were used to detect both known and novel
CoVs [56, 57]. Amplified products of the expected size were
cloned and sequenced as described in [22]. Sequences were
analyzed and edited using Geneious Prime 2019.1.3 [58].
A sample was considered positive when at least one

PCR assay yielded a sequence that matched corona-
viruses in GenBank. Coronavirus sequences were classi-
fied as belonging to a specific taxa following previously
described methodologies [22].

Bats age, sex, and species identification
Bats were categorized as adults and juveniles based on
size, and morphological and behavioral characteristics
were observed at sample collection. The sex of the bats
was also recorded.
Identification of some bat species can be challenging

in the field. For this reason, field-identified species were
confirmed by DNA barcoding using the cytochrome b or
cytochrome oxidase subunit 1 mitochondrial genes [59].
Obtained sequences were compared against sequences
in the GenBank and Barcode of Life databases [60, 61].
When possible or necessary, sequences from both genes
were used for species identification. A threshold of 97%
nucleotide identity was used to confirm the species; se-
quences with 95–97% nucleotide identity were assigned
a “conferre” (cf.) species status, and sequences below
95% nucleotide identity were either classified to the

genus level or as unidentified. Sequences with > 97% nu-
cleotide identity to more than one species for either
gene, were classified to the genus level unless they
clearly clustered with sequences from other animals in
the same geographic area.
If barcoding results for all of the first ten bats tested

per species were in agreement with the field identifica-
tion, we assumed that the field identification for the
remaining bats of that species in each country was cor-
rect. Otherwise, all of the remaining samples were bar-
coded to ensure correct speciation.

Bat life history
We recorded when sampled females were pregnant based on
abdominal palpation, had attached pups (indicating recent
parturition), and were lactating, as well as when juveniles
were captured. Therefore, we were able to track pregnancy,
lactation, and recent birth pulses. Moreover, we accessed the
data in the PanTHERIA [62] and Amniote [63] databases,
and we thoroughly reviewed the literature on the biology of
the bats species we sampled for latitudes similar to our sam-
pling locations. With the gathering of these information
sources we established the timing of the birth pulses, lacta-
tion periods, and the weaning of pups for each species. For
the details justifying the dates inferred for these three life his-
tory events for each species and the corresponding biblio-
graphical references see Additional file 1.
Once the timing of these events was confirmed or in-

ferred, we were able to establish 2 seasons that occur at
least once during the year across all observed bat spe-
cies: i) when juveniles are being weaned and female-pup

Fig. 1 Unique locations where samples from bats were obtained
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contact decreases (“Recent weaning” [RW]) and ii) the
rest of the year (hereafter “N-RW” for “Not recent wean-
ing”). We chose to evaluate risk of CoV shedding for the
first period because past longitudinal studies with microchir-
opterans in Germany and China found higher CoV-RNA
loads approximately 1 month after parturition [51, 52]. Simi-
larly, peaks were found 2months after the formation of a
maternity colony of Myotis macropus [49], which would
match a post weaning period for that species. Here, we de-
fined the end of the RW period as 1 month after the last
pups were weaned. We assumed that 1 month would pro-
vide a reasonable time window for the colony to “clear” the
CoV susceptibility status of this period and acquire the sus-
ceptibility corresponding to the season(s) when weaning does
not occur (N-RW period), if differences actually exist.
Finally, once we determined these two seasons, we cat-

egorized each bat sample into one of them depending on
the week of the year in which they were taken. Because
some species had more than one litter per year, there
could be more than one RW period during the year. It is
worth noting that we were able to define these periods
for those species in our dataset that have synchronized
reproduction, whose biology was properly described, and
whose taxonomy is generally accepted. When we could
not assign a reproductive period to specific bats, this
season was imputed (see Methods: Statistical Analysis).

Bat species traits
We characterized specific traits of each bat species
studied based on previous scientific literature on
pathogen dynamics in bats [51, 64–71]: colony size
(small, medium, or large if a typical colony contains
one to dozens, hundreds to thousands, or thousands
to millions of individuals, respectively); roost type
(“closed” if the species has been reported to use
caves, mines, roofs, or other confined spaces; or
“open” if the bats have been typically reported
roosting in the foliage of trees); the aggregation of
bats in clusters while roosting (no, yes); and the
number of litters per year of the species at equator-
ial latitudes. References are provided in Additional
file 2. We also considered data from PanTHERIA
and Amniote [62, 63].
We could not include other species traits, such as

the mating strategy (harem or another) and the segre-
gation of females in maternity colonies, because avail-
able studies were incomplete or contradictory. We
did not include factors, such as multi-species occu-
pancy of the roost, because we did not observe all of
the roosts. Further, we did not assess postpartum es-
trus, as within the study area, it is only known to
occur in some Molossid bats [72], of which we only
sampled a small number.

Statistical analysis
To statistically estimate the association between the RW
and CoV detection we used a Bayesian inference to
model the detection of CoVs as a Bernoulli process of
the form:

CoV i � Bernoulli pið Þ withi ¼ 1;…; I

where CoVi, the detection of CoV in rectal swabs (1 if
detected, 0 otherwise) from the ith bat (sample), is as-
sumed to follow a Bernoulli process parameterized by pi,
the probability of CoV detection on the ith bat. This par-
ameter was related to a set of candidate covariates as:

logit pið Þ ¼ α0 þ β1X1i þ γY i þ ρ1C1i þ…
þ ρlCli þ S j ið Þ þ Spk ið Þ; ð1Þ

with Sj~Normal (0, σS) and Spk~Normal (0, σSp).
Here X and Y are binary covariates representing the

RW season and juvenile age category. We specifically in-
cluded these two terms to separate the potential associ-
ation of the season with CoV detection from the
seasonal presence of juveniles. Because it was not feas-
ible to allocate all species in the RW or N-RW seasons
based on previous research, we assumed that these un-
known reproductive seasons were “Missing at Random”
and they were imputed as a function of the latitude at
sampling, the day of the year of the sampling event, the
number of litters per year of the corresponding species
(one litter per year versus more than one litter per year),
and the historical precipitation of the month at the sam-
pling event location. The description of the imputation
model is provided in Additional file 3.
The terms Sj and Spk represent the sampling event-

and the species-specific intercepts, respectively, because
we assumed that bats sampled in the same event and
bats belonging to the same species were not independent
with respect to CoV detection. No sampling event in-
volved the same bat colony in successive RW and N-RW
seasons, therefore, we assumed that CoV detection was
not temporally correlated within sampling locations.
We constructed the model by adding other covariates

one-at-a-time to this working model: the C1...l categorical
variables; and they remained in the model if they were
judged to confound the relationship between CoV detec-
tion and the reproductive seasons or between age and
CoV detection (i.e., their inclusion caused meaningful
changes in the Posterior Probability Distributions [PPDs]
of the specific reproductive season or age coefficients).
Finally, C1...l categorical variables could be retained as
well if they were marginally associated with CoV detec-
tion (the corresponding coefficient PPD did not include
zero). To assess the goodness-of-fit of the models, we
evaluated the congruence between CoV detection in the
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data and in the posterior predictive distributions yielded
by the models by: i) ages and seasons, ii) age, iii) per sea-
son, iv) per age and season, and v) per sampling event.
All models were constructed using “Stan” v. 2.17.0 [73]

which was run from “R” v. 3.6.0 [74] through the package
“RStan” v. 2.17.3 [75]. Weakly informative priors were
assigned for all coefficients: Normal(0, 1.5) for the esti-
mates of α0, β’s, γ, and ρ’s. The σS and σSp had a prior
Half-Cauchy (0,5) following previous suggestions [76, 77].
The PPDs were estimated by sampling in parallel from 4
MCMC chains for 4000 iterations following 3000 iteration
warm-up for a total of 4000 saved samples for each par-
ameter PPD. Convergence was assessed by the Gelman-
Rubin statistic [78] and graphically using trace plots. The
code to fit the models is available at https://github.com/
dmontecino/East-African-bats-and-CoV-shedding.

Results
Bat samples, age, sex and reproductive seasons
We sampled 753 individuals, all of them aged and success-
fully identified to belonging to 15 species. Nycteris the-
baica, Pipistrellus hesperidus, and Rhinolophus clivosus
were assigned the “conferre” status. Hipposiderids were
assigned only to the genus level because barcoding did not
provide certainty on species identification in line with pre-
viously recognized taxonomic difficulties [79–81]; however,
the biology of the candidate hipposiderid species is similar
(Fig. 2; [82, 83]), and we were able to used them for estima-
tion purposes. We excluded Scotophilus viridis (n = 6) from
the analysis because their reproductive traits are unknown,
and this species also has taxonomic difficulties for species
identification [84]. Therefore, these six individuals were re-
moved, and 747 bats were included in the study.
We were able to infer the reproductive season for all

bats except for Lissonycteris angolensis, Rhinolophus cf.
clivosus, and Pipistrellus cf. hesperidus (n = 117, 104
adults and 13 juveniles) that had limited available know-
ledge on biology and reproductive season. These repro-
ductive seasons were imputed as explained above. This
imputation process did not substantively affect the pro-
portion of bats in each reproductive period or the crude
CoV detection per age (Additional file 3: Figure S3.2).
Moreover, we had partial data for Neoromicia nana and
Triaenops persicus lactation period and we assigned one
that is likely longer than it would be in reality based on
the other species. Even under this overextended period,
none of these bats (N. nana and T. persicus) could have
being sampled during the RW season, so this knowledge
gap did not risk a misclassification (Fig. 2).
In the end, 274 and 356 bats were allocated in the N-

RW and RW periods, respectively. The distribution of
bats across the reproductive periods per age and sam-
pling event was heterogeneous as expected due to the
opportunistically nature of sampling. Indeed, 233 and

273 adult bats were in the N-RW and RW periods, re-
spectively, while 41 and 83 juvenile bats were sampled in
these seasons, respectively.

Coronavirus detection and identification
In total, 30.79% bats were positive for CoVs (n = 230).
Within the subset of adult bats, 26.22% were positive (n =
160) while 51.09% of the juvenile bats were positive (n =
70). The detection of CoV shedding was variable across
seasons and bat species, as well as across sampling events
(0, 100, 9.69, and 25.84% for the minimum, maximum,
median, and mean detection, respectively). The CoVs
found per species are shown in Additional file 4: Table S4.

Species traits
A summary of the roosting and reproductive traits of
the bat species sampled is provided in Table 1. All bats
except N. nana (n = 9) and E. helvum (n = 315) roosted
in “closed” structures, such as caves, abandoned mines,
and roofs. Within the group of bats using “open” struc-
tures, E. helvum was the only species with CoV positive
individuals. Therefore, we did not use this covariate to
assess a potential association with CoV shedding.

Statistical analysis
The models showed adequate sampling. The 4 Markov
Chain Monte Carlo chains converged graphically, whilst
all Gelman-Rubin statistics were < 1.004. The selected
model had a number of effective samples for each coeffi-
cient of at least 1636. The data were properly fitted, as
well (Additional file 5: Figure S5.1), although some pre-
dictions lacked precision. The PPDs of the fixed coeffi-
cients are shown in Additional file 5: Figure S5.2.
The selected model to assess periodic differences in

CoV shedding included season and age, species-specific
intercepts, and sampling event-specific intercepts. Beyond
the species-specific terms, we included a binary categorical
covariate equal to 1 for E. helvum and T. persicus and 0
otherwise. We incorporated this term because CoV detec-
tion in these species was remarkably higher than the other
species. As expected, this fixed effect was correlated with
the corresponding species-specific intercepts (the
remaining correlations were all low); however, we decided
to keep it to assess if the main findings hold even when
accounting for the bat species with highest detection. The
corresponding means, standard deviations, and 90% HPDI
are shown in Table 2.
The coefficients’ PPDs from the selected model indi-

cate an association between age and CoV shedding, with
juveniles presenting 1.26–2.94 times higher odds to shed
compared to adult bats (90% HPDI). The coefficients’
PPDs also point to an association between the repro-
ductive season and CoV shedding as well, with an esti-
mated odds 1.71–16.00 times higher to shed during the
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period when pups are being compared to other seasons
(90% HPDI). The proportions of CoV shedders esti-
mated by reversing the 90% HPDI of the logits were:
0.02–0.22, 0.09–0.59, 0.01–0.13, and 0.05–0.42 for juve-
niles during the “N-RW” and “RW” periods, and adults
during the “N-RW” and “RW” periods, respectively (90%
HPDI). These values refer to bats not belonging to the
species E. helvum or T. persicus. Finally, the predicted
CoV detections, based on the posterior predictive distri-
butions, were 0.01–0.18, 0.06–0.54, 0.00–0.05, and 0.04–
0.36, for these same groups (90% HPDI; Fig. 3, left). In
practical terms, these last values imply that juveniles

during the “RW” period are, on average, 3.34 times more
likely to be detected shedding CoVs compared to juve-
niles in the “N-RW” period. Adults during the “RW”
period are, on average, 3.93 times more likely to be de-
tected shedding CoVs compared to adults in the “N-
RW” period. In both seasons, juveniles are, on average,
more likely to shed CoVs, than adults.
The selected model suggests a higher odds of CoV

detection in E. helvum and T. persicus compared to
other species. The species-specific intercept terms,
once the E. helvum - T. persicus effect is included,
suggest no further differences in terms of CoV

Fig. 2 Summary of the inferred reproductive periods of the bat species sampled. The red squares show the week of a typical year each bat
species was sampled. The yellow, green, and blue polygons show the assigned extent of the birth pulse (yellow), lactation (green), and mating-
pregnancy periods (blue). The grey polygons represent the inferred “Recent weaning” period(s) per bat species. In species with unknown lactation
length (N. nana and T. persicus), the light green polygons represent the likely overextension of this period not including any other bat in the
“Recent weaning” period. The question marks show the period we could not infer the corresponding reproductive activities
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shedding (Fig. 3, right); however, the estimates are
not precise. The sampling event-specific random in-
tercepts suggest that a few specific locations could
show differential CoV shedding but that most of them
do not explain further variation (Additional file 6).

Discussion
If coronavirus shedding by bats follows temporal pat-
terns that are generalizable across species and locations,
then mitigation strategies targeting the prevention of hu-
man exposure and potential spillover could be directed
toward high-risk periods, through mechanisms that can
also support bat-human coexistence and the provision of
bat ecosystem services. Previous research has focused on
viral identification in specific locations and in few spe-
cies [47–50], resulting in a limited representation of viral
dynamics in association with few ecological settings, bio-
logical traits, and reproductive strategies. Additionally,
few studies of coronavirus shedding patterns have
employed statistical models and, in consequence, the po-
tential complex web of factors and causal relationships
that may determine this process has not been fully ex-
plored. Here, we aimed to address these issues by

statistically modeling coronavirus RNA detection in sev-
eral bat species, captured at different times and locations
in East Africa and involving different ecological contexts
and life histories. Using data from several hundreds of
bats, we found that, beyond spatial, taxonomic, and life
history differences; i) the odds of coronavirus shedding
is higher during the period when pups are being weaned
(up to a month after the lactation period is over), and ii)
juvenile bats have higher odds to shed these viruses.
Moreover, the ratios of predicted detections per bat cat-
egory (age and reproductive season) suggest that juvenile
bats during the recent weaning period have relatively
higher shedding compared to bats out of this period no
matter their age. Caution must be taken with these ra-
tios because we used a logit link and our data had high
proportion of CoV shedding in specific groups. How-
ever, our results are consistent, and they are in agree-
ment with previous research conducted in a restricted
number of species and locations.
Similar seasonality of coronavirus shedding has been ob-

served in Germany, Australia, Thailand, China, and Ghana
(West Africa). In the specific species involved in these pre-
vious studies, higher coronavirus shedding and viral loads
were detected weeks after the birth pulse [47–52, 85]. Fur-
ther, and consistent with our results, detection of higher
levels of coronavirus in juveniles has been reported in mi-
cro- as well megabats from Africa, Asia, Europe, and
North and South America [22, 48, 50, 86–89].
It has been proposed that the increased detection of

coronaviruses after the birth pulse is attributable to the
waning of passively-received maternal antibodies in juve-
niles [51]. This idea has been frequently cited; however,
we are not aware of any longitudinal age-specific

Table 1 Summary of traits by sampled chiropteran species

Chiropteran species Trait

Colony size Roost type Aggregation in clusters while roosting Number of litters per year

Chaerephon pumilus Medium Closed No 3b

Coleura afra Large Closed No 2

Eidolon helvum Large Open Yes 1

Hipposideros sp. Medium Closed Yes 1

Lissonycteris angolensis Medium Closed No 2

Mop condylurus Medium Closed Yes 2

Neoromicia nana Small Opena No 1

Nycteris cf. thebaica Medium Closed No 1

Pipistrellus cf. hesperidus Small Closed Yes 1

Rhinolophus cf. clivosus Small Closed No 1

Rousettus aegyptiacus Large Closed Yes 2

Taphozous mauritanus Small Closed No 2

Triaenops persicus Large Closed Yes 1
a Neoromicia nanus roosts in folded banana leaves. Could be considered “Closed” also
b It has been proposed up to 5

Table 2 Summary of the posterior probability distributions of
the fixed-effects coefficients of the selected model

Covariate Mean SD 90% HPDI

Intercept (α0) −3.21 0.77 −4.375 - -1.944

Recent weaning 1.62 0.68 0.538–2.772

Juvenile age class 0.66 0.26 0.233–1.078

E. helvum – T. persicus 1.33 1.17 −0.511-3.282

SD Standard deviation and 80%, HPDI = 90% high posterior density interval
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coronavirus seroprevalence study in bats. Such studies
are important to understand the drivers of pathogen per-
sistence and spillover risk, and in consequence, to ethically
manage and prevent bat pathogen exposure. Nevertheless,
this kind of research is difficult to conduct due to logistical
challenges, our questionable ability to obtain statistically-
representative samples across age groups, cross-reactivity
of serological assays, and the difficulties to differentiate
serodynamics derived from closed-population processes
from those caused by migratory movements. Although ex-
trapolations for antibody dynamics across viruses and spe-
cies are not simple [90], bat serodynamics for Hendra
virus are congruent with the increased detection of coro-
naviruses after the birth pulse. Pups passively receive ma-
ternal Hendra virus antibodies which decline after the first
month of age up to 6 months of age [91–94]. This decline
would lead to a period in which young bats tend to be
more susceptible to infection, become infected, and then
shed virus. Consistently, coronavirus shedding peaked
weeks after the birth pulse in a German and a Chinese
species [51, 52] and immunologically naïve bats shed
higher coronavirus loads [30]. Over time, as young bats
clear Hendra virus infection, they become seropositive
again [91–94]. Concordantly, capture-mark-recapture
studies support the clearance of coronaviruses in infected
bats [47, 95], which would become seropositive. However,
young bats may not reach adult seroprevalence levels until
they are older than a year, as occurs with Hendra virus
[91, 92, 94]. Therefore, the population of juvenile bats
would remain comparatively more susceptible to viral in-
fection and shedding beyond the period immediately after
weaning. Age-specific henipavirus seroprevalence in Afri-
can E. helvum is in agreement with the serodynamics de-
scribed for Hendra virus [90].

Additionally, coronavirus transmission may be favored
by high colony density created by the birth pulse, as pre-
viously proposed [85, 95], and then the seasonal influx
of susceptible juveniles could accelerate viral spread
across the entire colony, including adult bats. Indeed,
adult Myotis macropus in an Australian colony showed a
peak of coronavirus detection after the birth pulse [85].
The peak of coronavirus detection for two Hipposideros
species and Nycteris cf. gambiensis sampled in Ghana
occurred during the months that encompassed the birth
pulse and nursing after accounting for the age of the
sampled individuals [50]. Higher coronavirus infection
has also been reported in lactating females [85, 88],
which overlap with the period of pup weaning and decay
of maternally-derived immunity; however, the opposite
has also been found [48, 50, 85].
In practical terms, public health managers could an-

ticipate high risk periods for coronavirus shedding to
target interventions. Assuming that higher spillover risk
is a function of higher viral shedding [67] and that all
coronaviruses with zoonotic potential behave ecologic-
ally similarly to coronaviruses detected in this study,
managers could target the prevention of human-bat dir-
ect (consumption) or indirect (bat droppings) contact
specifically during the high-risk season: around and just
after weaning, the timing of observable juveniles or indi-
viduals smaller than adults. For the species and inter-
faces defined herein, those management periods have
now been determined (Fig. 2). For others, direct observa-
tion of bats at high-risk transmission interfaces could be
used to identify time periods when non-adult sized bats
are present. However, observation of dependent pups is
not always easy [96]. Of course, for specific species, birth
pulses and lactation seasons could also be used to more

Fig. 3 a Modeled proportion of chiropterans shedding coronavirus viral particles in two reproductive periods inferred for these bats by age class.
b The estimated species-specific intercept coefficients. The lighter colors represent the range where the 90% of the estimated detection values
are concentrated (the High Posterior Density Interval). The darker colors show the 51% High Posterior Density Interval
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precisely establish high risk periods similar to the
methods we used here, including a combination of direct
observation, reports from previous literature, and con-
sultation with knowledgeable bat biologists. Our pro-
posed risk-driven strategy i) is evidence-based, as it
builds upon coronavirus shedding patterns observed
across several chiropteran species present around the
world; ii) does not require the advanced laboratory cap-
acity often lacking in resource-restricted settings where
intense bat-human interfaces usually occur; iii) is a good
alternative to the ideal but expensive and resource-
intensive longitudinal surveys; and iv) it may prevent the
exposure to viruses belonging to other taxa whose ob-
served bat shedding dynamics resemble our findings for
coronaviruses (e.g. paramyxoviruses [97]),
The lower coronavirus detections in African emballonur-

ids (C. afra and T. mauritianus) and the higher detections
in E. helvum, African hipposiderids (Hipposideros sp. and T.
persicus), and R. cf. clivosus that we found are consistent
with previous reports [22, 44, 50, 98] and should be consid-
ered by managers when providing risk-based spillover pre-
vention strategies. Moreover, SARS-like coronaviruses in
Africa have been found in hipposiderid, rhinolophid, and
molossid bats [22, 57, 98], and MERS-related coronaviruses
have been found in vespertillionid bats [22, 28, 29]. There-
fore, it seems reasonable to prioritize the identification of
birth pulses and lactation seasons, and thus determine
high-risk periods of coronavirus shedding, for these bat
families. Interestingly, E. helvum roost in tight clusters that
can contain hundreds of individuals [99], similar to T. persi-
cus. On the other hand, emballonurids, showing the lowest
crude detection levels across families (represented by
Coleura afra and Taphozous mauritanus here) tend not to
cluster while roosting [100, 101]. We did find an association
between coronavirus shedding and whether the species typ-
ically aggregate in clusters while roosting when the variable
“E. helvum – T. persicus” was not considered, but we chose
a different model not including this term because we did
not directly assess bat roosts and our categorization may
oversimplify the continuum from mostly solitary roosting
(e.g., Neromocia nana) to common tight aggregations of
bats (e.g., Mops condylurus). Using this categorization could
be misleading, as some species differentially cluster while
roosting depending on temperature, colony size, colony
type (e.g., maternity colony versus not a maternity colony),
and season [72]. Future studies should consider the roost-
ing habits of bats, as this trait could further support risk-
based management to prevent or reduce human exposure.
The risk-driven strategy we propose provides a contact-

reduction alternative that is ethically favorable compared to
often-employed measures, such as culling or other reactive
measures, that ensue when the public becomes aware of a
health threat without a suggested practical option to reduce
their risk for exposure. In addition to ethical concerns and

being logistically difficult and expensive, culling has failed to
reduce disease in wild populations and can result in even
higher pathogen levels. For example, “badger culling can
make no meaningful contribution to cattle tuberculosis con-
trol in Britain” [102]. A culling program to reduce Echino-
coccus multilocularis prevalence in red foxes (Vulpes
vulpes) resulted in an increase of infection [103]. This strat-
egy has also failed to control rabies in canids around the
globe [104]. Similar results have been observed in bats. Cul-
ling failed to reduce rabies seroprevalence in Desmodus
rotundus in Perú and could have increased the levels of ex-
posure to the virus [105, 106]. In Argentina, the extermin-
ation of bats changed the direction of spread of rabies in
livestock but did not prevent its advancement [107]. In
Uganda, miners exterminated a colony of Rousettus aegyp-
tiacus bats after an outbreak of Marburg virus in 2007 that
involved 4 miners in close contact with these bats. Five
years later, a new outbreak occurred in miners from the
same mine. The second time, Marburg virus RNA was de-
tected in a higher proportion in the R. aegyptiacus that
recolonized the mine (13.3%, n = 400; [108]) compared to
RNA detection before culling in this cave (5.1%, n = 611;
[109]) and other caves in Uganda (2.5%, n = 1622; [67]) and
Gabon (4.8%, n = 187; [110]) where culling has never been
reported.
Culling can also cause demographic changes, leading to a

higher proportion of juvenile individuals. This change may
occur because of a disproportionate cull of older individ-
uals; the potential increase in survival of pups at lower
population densities, followed by higher recruitment of ju-
venile females into reproductive age [111]; the hypothetical
increase of young dispersers immigrating from neighboring
colonies into culled, less dense, and better resourced col-
onies [105, 112]; or by causing compensatory reproduction
[113]. This last possibility may have not been studied in
bats but seems unlikely due to their high conception rates
and usual litter size of one. Examples of younger popula-
tions after culling have been reported in the red deer (Cer-
vus elaphus), racoon (Procyon lotor), American mink
(Mustela vison), and Australian brushtail possums (Tricho-
surus vulpecula), among others [114–117]. As our results
and past research consistently show higher viral shedding
and detection in young individuals, activities leading to a
younger bat population are not advisable for viral spillover
management. Similar results are expected when fruit bats
are culled based on being categorized as “agricultural pests”;
therefore, this kind of management may create higher risk
of viral exposure to the human population.
Virological, ecological, and epidemiological re-

search on bats over the last 15 years has helped to
identify chiropterans as hosts of zoonotic viruses and
to document that human-driven environmental
change, human behavior, and human-to-human
transmission are the key drivers for the creation of
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bat-human interfaces, spillover, and epidemics of
emergent viruses, respectively [118–120]. In the con-
text of the current biodiversity and bat conservation
crisis [121, 122], we must not omit these facts when
attempting to effectively, and responsibly frame and
communicate disease risks associated with bats. Real-
istic, data-based risk communication is of paramount im-
portance to avoid framing bats as a threat to humans and
to support bat conservation given their important eco-
logical roles [123, 124]. With this background, it seems a
proper time for the scientific community studying “bat-as-
sociated” viruses to move the conversation from bat spill-
over risk assessments to the planning of pro-biodiversity
and subsequently pro-ecosystem strategies aiming to miti-
gate spillover risk. Science is valued not only for the diag-
nosis of problems but because it finds solutions to them.
Here, we have attempted to aid the progress of scientific
and management dialogue by proposing, not only a man-
agement strategy to limit potential coronavirus spillover,
but one that is context- and logistically-grounded and
pro-conservation, promoting the delivery of the key eco-
system services provided by bats.

Conclusions
Data from hundreds of bats collected in East-Africa show
that coronavirus shedding is expected to be more frequent
when pups are becoming independent from the dam, inde-
pendently of the age of the bats, their species, their location,
and their life histories; however, the odds of shedding do
differ by species. These results can guide temporal-based
mitigation strategies to prevent bat-associated coronavirus
exposure using non-lethal methods in limited-resource set-
tings, where longitudinal surveillance is not feasible, by
identifying high-risk periods for coronavirus shedding when
contact with bats should be avoided.
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